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Metered Residential Cooling Loads: Comparison of Three 
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Abstract-End-use metered data collected for five years from 350 
California residences are used to compare three types of models for 
allocating estimates of annual residential central air conditioning 
energy use to hours of the year. We assess how well the model fits 
the data for daily energy, peak demand, and demand coincident 
with system peak. A model which couples regression-based 
functions for daily load estimation with hourly estimation according 
to a library of load profiles is judged to have a slightly better fit to 
the data than a model that estimates hourly loads directly from 
hourly functions derived from linear regressions. Concerns 
regarding the applicability of end-use metered data for long-term 
resource planning are described. 

I. INTRODUCTION 

End-use electricity demand forecasts play a critical role in 
resource planning approaches that directly consider both supply- 
and demand-side options to meet customer energy service needs 
[lo]. To forecast end-use hourly loads, utility and state planners 
have had in the past to rely on simulated and borrowed end-use 
data and on class load research data. Data from end-use metering 
projects holds the promise of increasing the accuracy of these 
forecasts; however, two critical questions need to be answered: (1) 
How much can end-use metered data increase the accuracy of long- 
term forecasts and ultimately improve resource planning, and (2)  
How broad is the applicability of such data, across time and service 
areas? 

This paper begins to answer these questions by studying the 
performance of models constructed from metered residential 
central air conditioning loads to see how well the models fit the 
data fi-om which the models were derived. The models we examine 
are used to produce hourly electricity load shapes, acting as post- 
processors for separate end-use models that generate forecasts of 
annual energy use. 

Much has been written on forecasting system loads. Most of the 
literature addresses techniques to estimate short-term loads, such 
as forecasting one day in advance. Short-term forecasting models 
tend to be empirical rather than structural and incorporate a 
different set of uncertainties and address a different set of needs 
than do the longer-term forecasts relevant to this study (Mbamalu 
and El-Hawary [15] include a review of short-term forecasting 
work). Other studies focus on long-range forecasting of system 
loads relative to projected changes in appliance stock and 
demographic or economic factors [ 1,7], issues which we 
circumvent in this paper by focusing on allocation rather than 

estimation of annual loads. Several studies on long-term 
forecasting of system loads investigate weather normalization and 
weather indexing techniques that are directly applicable to analysis 
of end-use metered space cooling data [12,14,22]. Belzer and 
Kellogg [4] address methods of assessing uncertainty in long-term 
estimates of peak system loads by using sampling simulations and 
extreme value distributions. 

Eto et al. [ lo] survey applications of end-use load shape data 
for demand-side management, integrated resource planning, and 
forecasting; tinder and Breese [22] provide an inventory of end- 
use load metering projects conducted in the United States. 
Analyses of end-use metering data are often descriptions of end-use 
consumption patterns, especially in relation to housing or 
demographic characteristics [17,18]. The analytical focus of recent 
work on residential end-use has been on load data transferability: 
using end-use metered data collected from one group of customers 
to represent the loads of another group of customers, typically 
involving a transfer ofdata from one utility to another [19,20,23]. 
The extent to which end-use load data can be adequately 
transferred from one service area to another depends on how 
accurately end-use load data from a group of metered customers 
can be used as a basis for drawing inferences about the total 
population that the metered sample is intended to represent. 

We distinguish our analyses of end-use metered loads from the 
studies cited above because we focus explicitly on comparative 
assessment of several types of forecasting models structures, used 
currently or in the past, in isolation from other types of uncertainty. 
Speciiically, we present findings from a project to improve central 
air conditioner electricity load-shape and peak-demand biennial 
forecasts by the California Energy Commission (CEC) and by the 
Pacific Gas and Electric Company (PG&E), a utility serving the 
greater San Francisco Bay Area and much of California's Central 
Valley [S, 91. 

We used hourly metered central air conditioner data and hourly 
weather data to compare three different procedures for modeling 
hourly residential air conditioning loads. In this paper, we first 
describe the end-use load and weather data used to estimate the 
coefficients of these models. We then describe the structure of 
each of the three models and the approach used to estimate model 
parameters. We discuss model assessment and compare the model 
fit according to a variety of metrics and conclude by discussing 
some issues relevant to the use of residential end-use metered data 
for forecasting, long-term planning, and assessing the efficacy of 
such models. 
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11. APPROACH 

PG&Es Appliance Metering Project (AMP) was the first large- 
scale end-use metering project in California [5].  In this study we 
examine only central air conditioner metered loads collected 
between 1985 and 1989 which were available on an hourly basis 
for 350 residences. Although room air conditioners, heat pump 
compressors, and evaporative coolers are also used for space 
cooling in the service territory under study, they are not examined 
in this paper. Details on demographic characteristics of the 
residences metered and on engineering details of the sample, such 
as appliance models or indoor temperature, were not available for 
inclusion in our analyses. Such supplementary data, if available, 
could contribute to the value of end-use metered data for resource 
planning applications. However, because we are not interested in 
drawing conclusions for this paper about a larger population using 
the AMP sample, the lack of these data is not a problem. 

The residences metered are located throughout a large, 
climatically diverse geographical range. Following conventions 
used in past forecasts, we aggregated data into three regions and 
represented the weather in each region using data collected from 
National Oceanic and Atmospheric Administration (NOAA) 
stations, using one station per region. The region represented by 
Fresno is very hot, that represented by Sacramento is moderately 
hot, and the coastal area represented by the San Jose weather 
station is relatively mild. 

For each hour between 1985 and 1989, we computed an 
average load in kWh across all metered residences in a region, 
obtaining a time series of approximately 43,824 hourly average 
loads for each region. We report here on results for summer (June 
1-August 31) only. Analyses were based on an average of 49 
central air conditioners for the Sacramento climate region, 130 for 
the Fresno region, and 107 for the San Jose region. The annual 
average sum of base-75 cooling degree hours between 1985 and 
1989 was 14,134 for the Sacramento NOAA station, 25,445 for 
theFresno NOAA station, and 5,385 for San Jose NOAA station. 

111. LOAD SHAPE FORECASTING MODELS 

Because the three model formats examined here are typically 
used as post-processors for forecasts of annual end-use energy 
generated from separate models, equipment purchase and energy 
use decisions, stock turnover, and other economic and 
demographic factors are treated primarily as influences on annual 
energy use. Rather than using exogenously-estimated annual total 
loads, we fix modeled annual totals to equal observed annual AMP 
sample total loads. Uncertainty in producing annual end-use' 
energy forecasts remains a key component in analyzing the overall 
usefulness of end-use metered data for constructing forecasting 
models. 

We describe below the model structure and model estimation 

procedure for the Two-Stage Hourly Model, the One-Stage Hourly 
Model, and the THI-Matrix model. Three procedures were used 
for all our analyses: (1) Days for which average daily temperature 
fell below a pre-specified minimum were excluded; these 
minimums were 62.1, 66.2, and 58.6 degrees Fahrenheit for the 
Sacramento, Fresno, and San Jose regions respectively. (2) Model 
parameters were estimated separately for each region and season. 
(3) We combined data across all five years to construct these 
models. 

A. Two-Stuge Hourly Model 

The Two-Stage Hourly Model incorporates two principal sets, 
of definitions. One set assigns each day in the forecasting period 
to one of a limited number of categories, called load shape bins. 
These bins are typically defined both by calendrical characteristics, 
such as day of week and season, and by daily values of one or more 
weather variables. A characteristic load profile, specifying the 
proportion of daily load falling in each of twenty-four hours, is 
defined for each bin, creating a library of load shapes that span all 
possible conditions. The second set of definitions governs the 
allocation of annual energy estimate to days of the year. This 
allocation is accomplished according to prespecified functions of 
daily weather variables, which we call Daily Weather Response 
Functions (Daily WRFs). Daily energy use is allotted to the hours 
of the day using the load profile associated with the bin into which 
the day is assigned. The models we constructed are constrained to 
be linear throughout the range weather data except for the 
aforementioned minimum temperature criteria. Our results for the 
linear models indicate a bias toward underprediction of higher 
loads. We also examined non-linear models, but they did not seem 
to fit the data any better than the linear models we examined and 
they are much more complicated to use. 

We developed Daily WRFs by linear regression of daily 
functions of observed weather data on AMP sample data. Weather 
data for each NOAA station includes hourly measurements of dry- 
bulb temperature, wet-bulb temperature, wind speed, cloud cover, 
and a number of other meteorological characteristics. From these 
we derived a set of daily variables that could be used as 
explanatory variables in regressions on daily regional average loads 
computed from the AMP sample. Table 1 lists the set of daily 
weather variables derived from the hourly NOAA weather data and 
the definition of each of these variables. 

We used the automatic variable selection procedure known as 
stepwise regression to select a linear model for SUMLOAD with 
relatively high r-squared, initiating the procedure with the full set 
of potential explanatory variables listed in Table 1. Stepwise 
regression is a widely accepted procedure but is problematic in 
terms of the real objectives of forecasting for reasons discussed 
below; we use the procedure cautiously. We inspected the 
resultant models and used them as the basis for deriving models 
that met the practical and administrative criteria of using: (1) six 



860 

or fewer explanatory variables for each 
region and (2) the same covariates but 
different coefficients across all seasons 
for a given region. Table 2 gives 
details of the final models. The fit of the 
reduced models, in terms of r-squared, 
was nearly as high as the fit for the full 
models. These results suggest that, 
given the types of daily variables 
offered, no linear model will provide a 
dramatic improvement in overall model 
fit in comparison to the models selected. 
Note that many alternative sets of 
variables may have the same r-squared 
as the final models selected, so the 
particular covariates used for any given 
model should be interpreted with this 
caution in mind. 

R-squared varied considerably 
among the three regions. For the 
Sacramento region, a model with just 
two explanatory variables explains 94 
percent of the variance of load about the 
mean in the summer season. The r- 
squared for the mildest region, 
represented by the San Jose weather 
station, was 0.74, considerably poorer 
than the fits for the other climate 
regions; this result is expected because 
the range of loads observed is smaller, 
and the area is more climatically diverse 
than the other regions. For the Fresno 
region, r-squared is 0.89. In the second 
stage of this model, daily energy 
estimates generated from these weather 
variables are distributed to hours of the 
day according to one of a number of 
fixed load shapes. The principle behind 
defining load shape bins is to use 
characteristics external to load data, 
such as weather and day of the week, to 
separate days into groups so that load 
shapes are similar within a group, 
relative to load shapes in other groups. 
We used the load shape bin definitions 
based on day type (Weekday, or 
WeekendMoliday) and on average daily 
dry-bulb temperature, as had been 
developed for past forecasts [8,9]. The 
bins are shown in Table 3. 

Table 1. Variables Used in Daily Re 

Variable Name Oefinitlon 

SUMLOAD 

AVGDRY average dry-bulb temperature (DBT) 
AVGDRY1 AVGDRY, previous day 
AVGDRY2 AVGDRY, two days previous 
MXDRY maximum hourly DBT 
MXDRY1 MXDRY, previous day 
MXDRY2 MXDRY, two days previous 
MNDRY minimum hourly DBT 
MNDRYl DRY, prevlous day 
THISUM 
THtSUMl THISUM, previous day 
THISUM2 THISUM, two days previous 
MXTHI 
MXTHll MXTHI, previous day 
MXTHIZ MXTHI, two days previous 

toad in kWNday, computing from regional average 
load shape 

sum over 24 hours of max(TH1-68,O)' 

maximum hourly value of THI 

HUM MXDRY 

CDD80SM2 CDD80SM, two days previous 
CDD85SM sum over 24 hours of max(D6T-85,O) 
CDD85SMl CDD85SM, previous day 
CDDBSSM2 CDDBSSM, two days previous 
CDDSOSM 
CDDSOSMI CDDSOSM, previous day 

sum over 24 hours of max(DBT-90,O) 

TVARMX variance of MXDRY over three past days, 
inclusive _ _ -  - 

NARAVG variance of AVGDRY over three past days, 
inclusive 

TCHANGE MXDRY - MNDRY 1 
AVG DRY SQ AVGDRY? 
SCEl MXDRYI * MNDRY _ _ -  . . . . - . . . . . . . . . - . . . 
SCE2 MXDRY2 * MNDRYl 

Qualitative Variables 

REGION CEC Region 2,3, or 4 
ZONE 
DAYTY PE 

PG&E Zone R,S, or X 
day type indicator, either (1) Weekend or Holiday, 
or (2) non-holiday 
Weekday (Holidays are as defined on the PGBE 
Rate Summary sheet) 



Table 2. Summary of Daily Regression Results 

TCHANGE 
AVG DRYSQ 
SCEl 
SCE2 
R2 (# covariates) 

covariates) 
R'-fuIi (# 

Sacramento Seasonal Fresno Seasonal San Ramon Seasonal 
Regression Coefficients Regression Coefficients Regression Coefficients 

Variable Spring Summer Fall Spring Summer Fail Spring Summer Fall 

-0.089 -0.1 98 -0.108 -0.092 -0.183 0.088 

0.91 0.94 0.93 0.92 0.89 0.76 0.87 0.74 0.52 

0 95(16) 0.95(7) 0 9547) 0.91(10) 0 90(4) 097(7) 091(11) 080(12) 062(12) 

INTERCEPT 

I I 
. . - - - . . . . 
AVGDRY2 1 
MXDRY I I I . . . - - - . . . 
MDRY 1 
MDRY2 
MNDRY 
MNDRYI I I I . . . . . - . . . . 
THISUM 0.045 0.117 0.051 0.123 0.137 0.093 0.109 0,191 0.104 
TH ISU M 1 
THISUM2 
MXTHI 0.948 0.664 0.51 2 
MXTHll 
MXTH12 
HUMMDRY 
CDDSUM75 I I I 
CDDSUM75.1 I I I 
CDDSUM75.2 I I I - - - - - . . . . - . - 
CDDSUM80 
CDDSUM80.1 0.012 0.055 0.027 
CDDSUM80.2 
CDDSUM85 0.078 0.036 0.074 
CDDSUM85.1 
CDDSUM85.2 0.030 0.012 0.021 
CDDSUMSO 
CDDSUM90.1 0.100 0.076 0.099 
CD D S U M90.2 
CDDSUM95 

TVARM I I 1 
TVARAVG I I I 
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After the weather data are put into bins, characteristic load shapes 
are derived for each bin. We used the AMP data to derive these 
load shapes. These data-derived load shapes replace load shapes 
used in the past, which were developed using engineering methods. 
To compute the load shapes from the sample data, we used an 
algorithm that relies on the load duration curve [ l l ] .  Preliminary 
investigations did not indicate that the current bins could easily be 
much improved [9]. 

B. One-Stage Hourly Model 

As an alternative to the two-stage approach described above, 
the One-Stage Hourly Model distributes total energy directly to 
hours of the forecasting period. In the One-Stage Hourly Model, 
hourly variables are used to define allocation functions. We refer 
to these allocation functions as Hourly Weather Response 
Functions (Hourly WRFs). We developed hourly functions by 
linear regression of hourly weather variables on hourly AMP data. 
We systematically tested a number of models, using variables such 

as hourly THI (temperaturdhumidity index), drybulb and wet-bulb 
temperature, and the average drybulb temperature for the day. We 
restricted data to hours with THI values 68 or above, modeling 
those hours falling below 68 as zero. We selected a single set of 
explanatory variables to use (with different coefficients) for all 
regions, seasons, and hours, basing this selection on considerations 
of model performance relative to model complexity. The model 
that we selected expresses load as a function of day-type and three 
quantitative variables: 

Load[hl = f(THI[hl, THI[h12,THILAG[h], DAYTYPE) 

where 

h stands for one of the 24 hours of the day, 
THI is base 68 temperature-humidity index, 
THILAG is base 68 temperature-humidity index summed over 

the six hours preceding the modeled hour, h 

Table 3. Cooling Load Bins for the Fresno Climate Region” 
I 

Range of Daily Average Temperature (OF) 
PG&E Zone Weekday Weekend 

R . . . . . . . . . . . . . . . . .  0.0-66.2 . . . . . . . . . . .  0.0-66.2 
66.2-75 .O 66.2-75.0 
75.0-80.0 75.0-80.0 
80.0-85.0 80.0-85.02 
85.0-87.5‘ 85.0-87.5 
87.5-100.0 87.5-1 00.0 

S . . . . . . . . . . . . . . . . .  0.0-62.1 . . . . . . . . . . .  0.0-62.1 
62.1 -70.0 62.1-70.0 
70.0-75.0 70.0-75.0 
75.0-80.0 75.0-80.0 
80.0-85. O3 
85.0-100.0 

X . . . . . . . . . . . . . . . . .  0.0-58.6 . . . . . . . . . . .  0.0-58.6 
58.6-67.5 58.6-70.0 
67.5-72.5 
72.5-77.5 
77.5- 1 00.0 

a these bins were used to develop load shape representation libraries for HELM daily models 
’ except for Spring: range extended to 85-100 
* except for Spring: range extended to 80-100; and Fall: range extended to 80-87.5 
3except for Spring: range extended to 80-100 

Thus, we estimated 24 separate 
models for each region and 
season: the model for any hour 
does not influence the model for 
either the hour preceding or the 
hour succeeding it. Results for 
the Fresno region summer season 
model are summarized in Table 4. 
This model achieved r-squared 
values for hourly models ranging 
from a low of 0.66, for 7 a.m, to 
a high of 0.89, for 9 p.m, with r- 
squared values in the late 
afternoon and evening always 
0.85 or greater. DAYTYPE was 
not a statistically significant 
covariate in all but a few, 
important, mid-afternoon hours. 
Note that the r-squared values for 
the hourly models are not directly 
comparable to r-squared values 
reported for the Daily WRFs, 
because data are aggregated 
differently across time. We 
examined all the relevanttime- 
series of model residuals by hour. 
For the Fresno region we found 
substantial variations in residual 
patterns among years: for 
example, for 7 p.m., nearly 75 
percent of the hourly loads were 
undepredicted in 1988, but more 
than 75 percent of the hourly 
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dimension being an hour of the day from 1 to 24, and the second 
dimension being the value of the weather index THI. For any 
combination of THI and hour, the matrix specifies a single scalar 
load. For any given trajectory of hourly THI values observed for 
a day, the matrix thus defines a corresponding trajectory of scalars. 
These scalars are normalized to produce a load shape used to 
spread the estimate of daily energy to hours of the day. In past 
forecasts, a three-day weighted average of degree-days of THI has 
been used to allocate annual energy to days of the year. We used 
the allocation method described below (although in principle any 
other function for daily energy allocation, such as the one 
developed for the two-stage model could be substituted): 

6 
7 
8 
9 
10 
11 
12 
13 

loads were overpredicted in 1986. The possibility of dramatic 
shifts in end-use energy consumption behavior should be kept in 
mind when analyzing and collecting end-use load data. 

J J 0.68 
J J 0.66 

J J J 0.67 
J f 0.75 
J J 0.75 
J J 0.78 

J 0.81 
J J J 0.83 

C. THI-Hour Matrix Model 

Like the Two-Stage Hourly Model described above, the THI- 
Hour Matrix approach allocates energy to hours by first allocating 
annual energy to days of the year and then spreading these daily 
energy estimates to hours of the day. However, the load profile 
used for this distribution to hours is not a fixed shape 
corresponding to the value of a daily weather variable. Instead, the 
profile is derived from a two-dimensional matrix, with one 

Table 4. Summary of Hourly Regressions for Fresno 
Reaion Summer Season 

For a given day I: 

Daily Energy[i] = (WTHISUM[i]/ATHISUM) 
* AC 

where 

WTHISUM[q = 0.6*THISUM[i] + 
0.3*THISUM[i-l] + 
0.1 *THISUM[i-2] 
24 

THISUM = IEIX (THZ [h] - 68, 0) 

ATHISUM = Long-term annual average sum 
of THISUM for the year 

AC = Annual electricity consumption 
for central air conditioner 

h-1 

[kWWYl 

For our model evaluations, we modified the 
procedure by (1) replacing ATHISUM by the 
sum of daily WTHISUM between 1985 and 
1989; and (2) defining AC as the five-year (1985- 
1989) unit energyconsumption (UEC) for central 
air conditioner load, computed from the AMP 
sample. Thus, for day I we scale the load profile 
generated from the time-temperature matrix by 
the ratio of WTHISUM to the product of the five- 
year total of annual THISUM and the five-year 
UEC averaged over the regional AMP sample. 

We constructed a THI-hour matrix from the 
AMP data by assigning each regional average 
load to a cell based on hour of the day and THI for 
that hour as computed from NOAA weather data. 
For each cell, we computed an average load 
across all observations assigned to the cell. We 
constructed one matrix per region, combining 
data across seasons. Figure 1 is an illustration of 
the THI-Matrix constructed for the Fresno climate 
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Load 

4 

3 

2 

1 

0 

Figure 1. Time-Temperature Matrix for Central Air Conditioning 
(Based on 1985-89 A data from all regions) 

region. The THLMatrix is appealingly compact and transportable, 
and a THI-Hour matrix developed from one set of data is easily 
compared to a matrix developed from other data. Furthermore, the 
matrix format suggests the possibility of smoothing the matrix 
surface if data are sparse, thus relying on information from 
neighboring cells and achieving more stable estimates [8]. No 
smoothing was applied in the present study. 

111. COMPARISON OF MODEL RESULTS 

A. Method of assessment 

For each combination of model type and region, we used 
observed weather data to generate an average central air 
conditioner (CAC) load estimate for all hours between 1985 and 
1989. In practice, forecasts may be generated on the basis of a 
fictive typical weather year. These estimates are not exactly 
predictions because they were used to develop the models but in 
order to adhere to standardized terminology, we refer to them as 

predictions. We compared 
these predicted loads to the 
observed regional sample- 
average loads from which the 
models were ultimately 
derived. As always, an 
appropriate method of 
assessment depends on the 
goal of the modeling process. 
We selected three measures 
upon which to base our 
assessments: (1) daily energy 
use; (2) daily maximum 
hourly load; and (3) 4 p.m. 
load. Daily energy use is the 
sum of the 24 hourly 
predicted loads. Maximum 
hourly load is the maximum 
of the 24 hourly predictions 
generated for the day. The 4 
p.m. load was selected 
because it is typically the 
hour of day when the system 
load peaks during summer. 
We computed values for each 
of these measures from both 
observed and predicted loads 
and then determined the 
difference between observed 
and predicted quantities on a 
day-by-day basis. We refer 
to these differences as model 
residuals. 

For each model and region, we made assessments for two 
groups of days: (1) all summer days between 1985 and 1989; (2) 
aPeakDay Subset, which we define as the 50 days between 1985 
and 1989 with the highest ratios of system daily loads to average 
annual system M y  load. To compare model performance, we use 
side-by-side boxplots displaying the distribution of residuals. Each 
box shows the median, first, and third quartiles, as well as extremes 
of the distribution of residuals. This method of display allows a 
straightforward visual assessment of two components of prediction 
error: model bias and the variability of residuals. Model bias is 
indicated by the position of the center of the box relative to the 
horizontal line marking equal predicted and observed values. The 
range and variability of residuals are indicated by the full length of 
the boxes and the relative location of the quartiles indicated by the 
box components. 

Figure 2 shows the disfribution of residuals for all summer days. 
The plots are arranged so that each row shows the results for one 
metric, and each column shows the results for one of the three 
modeling regions. Within each plot, boxes represents for each 
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Daily Energy 

Max. Hourly Load 

4 p.m. Load 

Sacramento Fresno 

lblhwrf lblwrf matrix lblhwrf lblwri matrix 

cecmallblhwrf lblmsl lblraw lblwrf cecmatlblhwrf lblmat lblraw lblwrf 

ceCmallblhwri lblmal lblraw lblwlf 

N 

- 
g 
t 
. o  

N 

cecmallblhwrf lblmal lblraw Iblwt 

San Jose 

I 
I lblhwrf lblwri matrix 

- 
cecmatlblhwrf lblmat lblraw lblwrl 

Figure 2 , Distribution of Model Residuals for Summer Season by Region. 

given metric and region, the distribution of residuals for each 
model. The figure shows that the THI-Matrix Model tends to 
overprdct daily energy for all regions, as indicated by the median 
value in the boxplot falling below the horizontal line that marks a 
zero residual. This pattem of overprediction cames through to the 
comparisons for maximum hourly load and 4 p.m. load. Residuals 
from the THI-Matrix Model also show much greater variability 
than the residuals for the other two models. For estimating daily 
energy, the Two-Stage Hourly Model appears to be slightly more 
accurate than the One-Stage Hourly Model. In contrast, for 
estimates of maximum hourly load and 4 p.m. load, the One-Stage 
Hourly Model appears to be slightly more accurate than the Two- 
Stage Hourly Model. In view of the fact that the quantities fit by 
regression are daily loads for the Two-Stage Hourly Model and 
hourly loads for the One-Stage Hourly Model, these slight 
Merences in performance are expected, and may not cany through 
to out-of-sample predictions. Note that inherent in the procedures 
used, net bias across all five yea s is constrained to be zero in the 
following cases because in m-y linear regression the sum of 
predictions equals the sum of observed values: (1) daily energy for 
all models; (2) 4 p.m. load for the One-Stage Hourly Model. 
Model estimates for any given year, however, may be biased. (Bias 
refers to mean, rather than median, values.) 

Figure 3 shows the distribution of residuals for each of the three 
measures for the Peak Day Subset. In contrast to the case of all 
summer days described above, predictions for the Peak Day Subset 
are not constrained to have a net bias of zero. Strikmgly, all three 
models tend to underpredxt for all three of the measures compared, 
the only exception being the Two-Stage Hourly Model for the 
Sacramento region for maximum hourly load. The matrix-based 
models give the most extreme underpredictions of daily energy. 
This bias indicates that the allocation of annual energy in this 
model as proportional to THI-DD is inadequate. Furthermore, the 
distribution of residuals for the THI-Hour Matrix Model appears 
skewed for both the Sacramento and Fresno regions, with a number 
of predictions that are particularly low, as shown by the detached 
lines above the box. The boxplots show that both the One-Stage 
Hourly Model and the Two-Stage Hourly models perform 
considerably better than does the THI-Matrix model although both 
still underpredict daily energy. Once again, the tendency toward 
underprediction is present in predictions of 4 p.m. load and 
maximum hourly load. The Two-Stage Hourly Model gives the 
best predictions of maximum hourly load for the Fresno and 
Sacramento regions although the Hourly WRF does nearly as well. 
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Daily Energy 

Max. Hourly Load 
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Figure 3 . Distribution of Model Residuals for Peak Day Subset by Region. 

V. DISCUSSION 

Forecasters are faced with more and more end-use metered data 
and more and more options for using such data. These data are 
beginning to be incorporated into forecasting procedures [24], but 
there is little published information that provides guidance in 
model selection for end-use forecasting. Among the three end-use 
forecasting models examined, we found that One-Stage Hourly 
Models yield slightly better results for a few measures of model 
performance in some regions, but that the Two-Stage Hourly 
Models perform as reliably or better in most cases. Hence we 
consider the Two-Stage Hourly Model at least as reliable as the 
One-Stage Hourly model overall. The THI-Matrix Models, as they 
stand, showed clearly inferior performance to the other models, but 
changes in estimation procedures used to construct the models may 
lead to improved performance.' 

We also found that none of the models performed as well in the 
more temperate region as they did in the warmer regions. Among 

1 Our evaluation procedures put the THI-Hourly 
Matrix at somewhat of an automatic disadvantage because this 
model is not constructed to optimize fit directly to the data to 
the extent the other two models are. 

our most important findings is that the models tend to underpredict 
the highest sample loads, which suggests that a modification to 
model structure or model estimation may be in order. Our results 
are based on a particular set of end-use data collected from a 
specific region; although we don't know how applicable these 
results would be to other utilities, the variability of the results 
across the three geographic regions examined in our study may 
have implications for the transferability of our results. 

Our assessments compared models' predictions to the data used 
to derive the models. Therefore, sampling variability aside, our 
evaluation results intuitively reflect an "upper limit" of how well 
the models developed might perform in predicting future regional- 
average central air conditioner loads, which is the type of 
predication that would be relevant for resource-planning. In the 
course of our analyses we considered a number of basic issues 
which bear consideration in model assessment and development. 

A. Purpose of model 

The goal of a modeling exercise might be to predict actual loads 
as accurately as possible, but statistical models do not tend to work 
this way. Instead, models are typically designed to optimize the fit 
of the model to particular aspects of the data. For example, if the 



867 

modeling objective were to predict peak annual load, much of the 
modeling described above might be irrelevant or actually 
detrimental to obtaining good results. Our examination of residuals 
for high system load days showed that the models did indeed tend 
to underpredict on these days. One commonly used method of 
deriving an annual peak load forecast is determining the maximum 
value of an entire year's forecasts, but this method may be 
suboptimal because peak loads are extreme values. Any data 
collection program undoubted has multiple purposes, but it is 
important to speclfy which goals are of most importance in a given 
analysis and to proceed accordingly. 

B. Evaluation of model 

We evaluated our models in the fairly limited framework of self- 
prediction; we did not directly address how well the models work 
for the purposes for which they might ultimately be constructed, 
other than to comment that the observed fit might reasonably be 
thought of as an upper limit. We also stress the need for analysts 
not to rely too heavily on summary statistics. In particular, r- 
squared is sometimes useful, but it is too general an expression of 
fit to be the ultimate criterion in evaluating model efficacy. 
Appropriate methods of evaluation depend on an understanding of 
the goals of most importance in a model's predictions. Cross- 
validation should also be considered as a technique to evaluate a 
model, though this technique is probably most important when 
sample size is small. 

C. Conventions and complexity of modeling 

Conventions, both administrative and technical, may dictate 
many aspects of the construction and use of end-use load 
forecasting models. For example, definitions of geographic 
regions, seasonal aggregations, and sources and summaries of 
weather data traditionally used in resource planning may also be 
used in producing end-use forecasts. On the one hand, many of 
these traditional definitions are likely to be in use because they 
work and cannot easily be improved upon (and expert opinion can 
provide invaluable insight toward building and interpreting end-use 
load forecasting models). However, when end-use data are 
available, a reassessment of these traditional aggregations and 
representations may be in order. For example, in some regions one 
might find that "Summer" season shifts into "Fall" in mid- 
September, or that observed data are better explained by 
disaggregating them into more climatic regions. Such changes lead 
to practical complications that increase expenses and admit higher 
dangers of data-processing errors and of overfitting data. The only 
reason to use a complex model is to increase the accuracy of the 
results. For another example, as in the case of our analysis, load 
data may be recorded on a half-hourly basis but analyzed instead on 
an hourly basis. Half-hourly data, however, may provide 

information valuable to assessing consumer behavior and analyzing 
the nature of end-use peak loads. 

D. Uncertainty and the incremental value of data 

Statistical methods typically provide some assessment of a 
model's uncertainty, which helps the modeler to compare models 
and balance parsimony with an adequate fit to the data. Good 
procedures tend to be robust against small deviations from 
assumptions. However, these assessments cannot completely 
reflect true uncertainty, not only because of the nearly inevitable 
failures to meet a model's assumptions, but, more importantly, 
because these failures are not automatically put in the context of 
other uncertainties. For example, what is the value of adding an 
three extra terms to a two-term model to increase model fit from an 
r-squared of 0.89 to 0.92, or of incorporating demographic 
information to interpret sample data that one suspects is not 
representative of the population as a whole? These examples raise 
questions concerning the value of collected data in achieving 
ultimate goals; these questions should be examined in view of the 
high cost of end-use load data collection. 
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